Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase
Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approache...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Journal article |
Language: | English |
Published: |
Nature Research
2019
|
_version_ | 1826263079404437504 |
---|---|
author | Dan, Q Newmister, SA Klas, KR Fraley, AE McAfoos, TJ Somoza, AD Sunderhaus, JD Ye, Y Shende, VV Yu, F Sanders, JN Brown, WC Zhao, L Paton, RS Houk, KN Smith, JL Sherman, DH Williams, RM |
author_facet | Dan, Q Newmister, SA Klas, KR Fraley, AE McAfoos, TJ Somoza, AD Sunderhaus, JD Ye, Y Shende, VV Yu, F Sanders, JN Brown, WC Zhao, L Paton, RS Houk, KN Smith, JL Sherman, DH Williams, RM |
author_sort | Dan, Q |
collection | OXFORD |
description | Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an L-Pro–L-Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites. |
first_indexed | 2024-03-06T19:46:00Z |
format | Journal article |
id | oxford-uuid:22511699-0052-4bfc-b939-5f94a7e2324b |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-06T19:46:00Z |
publishDate | 2019 |
publisher | Nature Research |
record_format | dspace |
spelling | oxford-uuid:22511699-0052-4bfc-b939-5f94a7e2324b2022-03-26T11:38:10ZFungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-AlderaseJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:22511699-0052-4bfc-b939-5f94a7e2324bEnglishSymplectic ElementsNature Research2019Dan, QNewmister, SAKlas, KRFraley, AEMcAfoos, TJSomoza, ADSunderhaus, JDYe, YShende, VVYu, FSanders, JNBrown, WCZhao, LPaton, RSHouk, KNSmith, JLSherman, DHWilliams, RMPrenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an L-Pro–L-Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites. |
spellingShingle | Dan, Q Newmister, SA Klas, KR Fraley, AE McAfoos, TJ Somoza, AD Sunderhaus, JD Ye, Y Shende, VV Yu, F Sanders, JN Brown, WC Zhao, L Paton, RS Houk, KN Smith, JL Sherman, DH Williams, RM Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase |
title | Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase |
title_full | Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase |
title_fullStr | Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase |
title_full_unstemmed | Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase |
title_short | Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase |
title_sort | fungal indole alkaloid biogenesis through evolution of a bifunctional reductase diels alderase |
work_keys_str_mv | AT danq fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT newmistersa fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT klaskr fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT fraleyae fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT mcafoostj fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT somozaad fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT sunderhausjd fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT yey fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT shendevv fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT yuf fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT sandersjn fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT brownwc fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT zhaol fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT patonrs fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT houkkn fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT smithjl fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT shermandh fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase AT williamsrm fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase |