Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase

Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approache...

Full description

Bibliographic Details
Main Authors: Dan, Q, Newmister, SA, Klas, KR, Fraley, AE, McAfoos, TJ, Somoza, AD, Sunderhaus, JD, Ye, Y, Shende, VV, Yu, F, Sanders, JN, Brown, WC, Zhao, L, Paton, RS, Houk, KN, Smith, JL, Sherman, DH, Williams, RM
Format: Journal article
Language:English
Published: Nature Research 2019
_version_ 1826263079404437504
author Dan, Q
Newmister, SA
Klas, KR
Fraley, AE
McAfoos, TJ
Somoza, AD
Sunderhaus, JD
Ye, Y
Shende, VV
Yu, F
Sanders, JN
Brown, WC
Zhao, L
Paton, RS
Houk, KN
Smith, JL
Sherman, DH
Williams, RM
author_facet Dan, Q
Newmister, SA
Klas, KR
Fraley, AE
McAfoos, TJ
Somoza, AD
Sunderhaus, JD
Ye, Y
Shende, VV
Yu, F
Sanders, JN
Brown, WC
Zhao, L
Paton, RS
Houk, KN
Smith, JL
Sherman, DH
Williams, RM
author_sort Dan, Q
collection OXFORD
description Prenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an L-Pro–L-Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites.
first_indexed 2024-03-06T19:46:00Z
format Journal article
id oxford-uuid:22511699-0052-4bfc-b939-5f94a7e2324b
institution University of Oxford
language English
last_indexed 2024-03-06T19:46:00Z
publishDate 2019
publisher Nature Research
record_format dspace
spelling oxford-uuid:22511699-0052-4bfc-b939-5f94a7e2324b2022-03-26T11:38:10ZFungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-AlderaseJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:22511699-0052-4bfc-b939-5f94a7e2324bEnglishSymplectic ElementsNature Research2019Dan, QNewmister, SAKlas, KRFraley, AEMcAfoos, TJSomoza, ADSunderhaus, JDYe, YShende, VVYu, FSanders, JNBrown, WCZhao, LPaton, RSHouk, KNSmith, JLSherman, DHWilliams, RMPrenylated indole alkaloids such as the calmodulin-inhibitory malbrancheamides and anthelmintic paraherquamides possess great structural diversity and pharmaceutical utility. Here, we report complete elucidation of the malbrancheamide biosynthetic pathway accomplished through complementary approaches. These include a biomimetic total synthesis to access the natural alkaloid and biosynthetic intermediates in racemic form and in vitro enzymatic reconstitution to provide access to the natural antipode (+)-malbrancheamide. Reductive cleavage of an L-Pro–L-Trp dipeptide from the MalG non-ribosomal peptide synthetase (NRPS) followed by reverse prenylation and a cascade of post-NRPS reactions culminates in an intramolecular [4+2] hetero-Diels–Alder (IMDA) cyclization to furnish the bicyclo[2.2.2]diazaoctane scaffold. Enzymatic assembly of optically pure (+)-premalbrancheamide involves an unexpected zwitterionic intermediate where MalC catalyses enantioselective cycloaddition as a bifunctional NADPH-dependent reductase/Diels–Alderase. The crystal structures of substrate and product complexes together with site-directed mutagenesis and molecular dynamics simulations demonstrate how MalC and PhqE (its homologue from the paraherquamide pathway) catalyse diastereo- and enantioselective cyclization in the construction of this important class of secondary metabolites.
spellingShingle Dan, Q
Newmister, SA
Klas, KR
Fraley, AE
McAfoos, TJ
Somoza, AD
Sunderhaus, JD
Ye, Y
Shende, VV
Yu, F
Sanders, JN
Brown, WC
Zhao, L
Paton, RS
Houk, KN
Smith, JL
Sherman, DH
Williams, RM
Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase
title Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase
title_full Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase
title_fullStr Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase
title_full_unstemmed Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase
title_short Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels-Alderase
title_sort fungal indole alkaloid biogenesis through evolution of a bifunctional reductase diels alderase
work_keys_str_mv AT danq fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT newmistersa fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT klaskr fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT fraleyae fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT mcafoostj fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT somozaad fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT sunderhausjd fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT yey fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT shendevv fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT yuf fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT sandersjn fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT brownwc fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT zhaol fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT patonrs fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT houkkn fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT smithjl fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT shermandh fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase
AT williamsrm fungalindolealkaloidbiogenesisthroughevolutionofabifunctionalreductasedielsalderase