A self-learning algorithm for biased molecular dynamics.
A new self-learning algorithm for accelerated dynamics, reconnaissance metadynamics, is proposed that is able to work with a very large number of collective coordinates. Acceleration of the dynamics is achieved by constructing a bias potential in terms of a patchwork of one-dimensional, locally vali...
Những tác giả chính: | Tribello, G, Ceriotti, M, Parrinello, M |
---|---|
Định dạng: | Journal article |
Ngôn ngữ: | English |
Được phát hành: |
2010
|
Những quyển sách tương tự
-
Using sketch-map coordinates to analyze and bias molecular dynamics simulations.
Bằng: Tribello, G, et al.
Được phát hành: (2012) -
From the Cover: Simplifying the representation of complex free-energy landscapes using sketch-map.
Bằng: Ceriotti, M, et al.
Được phát hành: (2011) -
Demonstrating the Transferability and the Descriptive Power of Sketch-Map
Bằng: Ceriotti, M, et al.
Được phát hành: (2013) -
From the Cover: Simplifying the representation of complex free-energy landscapes using sketch-map.
Bằng: Ceriotti, M, et al.
Được phát hành: (2011) -
Langevin equation with colored noise for constant-temperature molecular dynamics simulations.
Bằng: Ceriotti, M, et al.
Được phát hành: (2009)