Orbit-superposition models of discrete, incomplete stellar kinematics: application to the Galactic centre

We present a method for fitting orbit-superposition ("Schwarzschild") models to the kinematics of discrete stellar systems when the available stellar sample is not complete, but has been filtered by a known selection function. As an example, we apply it to Fritz et al.'s kinematics of...

全面介绍

书目详细资料
主要作者: Magorrian, J
格式: Journal article
出版: Oxford University Press 2019
实物特征
总结:We present a method for fitting orbit-superposition ("Schwarzschild") models to the kinematics of discrete stellar systems when the available stellar sample is not complete, but has been filtered by a known selection function. As an example, we apply it to Fritz et al.'s kinematics of the innermost regions of the Milky Way's nuclear stellar cluster. Assuming spherical symmetry, our models fit a black hole of mass $M_\bullet=(3.76\pm0.22)\times10^6\,M_\odot$, surrounded by an extended mass $M_\star=(6.57\pm0.54)\times10^6\,M_\odot$ within 4 parsec. The best-fitting mass models have an approximate power-law density cusp $\rho\propto r^{-\gamma}$ within 1 parsec, with $\gamma=1.3\pm0.3$. We carry out an extensive investigation of how our modelling assumptions might bias these estimates: $M_\bullet$ is the most robust parameter and $\gamma$ the least. Internally the best-fitting models have broadly isotropic orbit distributions, apart from a bias towards circular orbits between 0.1 and 0.3 parsec.