Inapproximability for antiferromagnetic spin systems in the tree nonuniqueness region
<p style="text-align:justify;"> A remarkable connection has been established for antiferromagnetic 2-spin systems, including the Ising and hard-core models, showing that the computational complexity of approximating the partition function for graphs with maximum degree Δ undergoes a...
Huvudupphovsmän: | Galanis, A, Stefankovic, D, Vigoda, E |
---|---|
Materialtyp: | Journal article |
Publicerad: |
Association for Computing Machinery
2015
|
Liknande verk
Liknande verk
-
Inapproximability of the partition function for the antiferromagnetic ising and hard-core models
av: Galanis, A, et al.
Publicerad: (2016) -
Inapproximability of the independent set polynomial below the Shearer threshold
av: Galanis, A, et al.
Publicerad: (2017) -
Inapproximability of the independent set polynomial in the complex plane
av: Bezáková, I, et al.
Publicerad: (2020) -
Inapproximability of the independent set polynomial in the complex plane
av: Bezakova, I, et al.
Publicerad: (2018) -
#BIS-hardness for 2-spin systems on bipartite bounded degree graphs in the tree non-uniqueness region
av: Goldberg, L, et al.
Publicerad: (2015)