GNNRank: learning global rankings from pairwise comparisons via directed graph neural networks
Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown...
Hlavní autoři: | He, Y, Gan, Q, Wipf, D, Reinert, G, Yan, J, Cucuringu, M |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Journal of Machine Learning Research
2022
|
Podobné jednotky
Podobné jednotky
-
Ranking and synchronization from pairwise measurements via SVD
Autor: d'Aspremont, A, a další
Vydáno: (2021) -
Rank Centrality: Ranking from Pairwise Comparisons
Autor: Negahban, Sahand, a další
Vydáno: (2017) -
Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization
Autor: Cucuringu, M
Vydáno: (2016) -
MSGNN: a spectral graph neural network based on a novel magnetic signed Laplacian
Autor: He, Y, a další
Vydáno: (2022) -
Pairwise diffusion of preference rankings in social networks
Autor: Brill, M, a další
Vydáno: (2016)