GNNRank: learning global rankings from pairwise comparisons via directed graph neural networks

Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: He, Y, Gan, Q, Wipf, D, Reinert, G, Yan, J, Cucuringu, M
Aineistotyyppi: Conference item
Kieli:English
Julkaistu: Journal of Machine Learning Research 2022

Samankaltaisia teoksia