GNNRank: learning global rankings from pairwise comparisons via directed graph neural networks
Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown...
Main Authors: | He, Y, Gan, Q, Wipf, D, Reinert, G, Yan, J, Cucuringu, M |
---|---|
פורמט: | Conference item |
שפה: | English |
יצא לאור: |
Journal of Machine Learning Research
2022
|
פריטים דומים
-
Ranking and synchronization from pairwise measurements via SVD
מאת: d'Aspremont, A, et al.
יצא לאור: (2021) -
Rank Centrality: Ranking from Pairwise Comparisons
מאת: Negahban, Sahand, et al.
יצא לאור: (2017) -
Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization
מאת: Cucuringu, M
יצא לאור: (2016) -
Ranking Alternatives by Pairwise Comparisons Matrix and Priority Vector
מאת: Ramík Jaroslav
יצא לאור: (2017-12-01) -
MSGNN: a spectral graph neural network based on a novel magnetic signed Laplacian
מאת: He, Y, et al.
יצא לאור: (2022)