GNNRank: learning global rankings from pairwise comparisons via directed graph neural networks
Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown...
Հիմնական հեղինակներ: | He, Y, Gan, Q, Wipf, D, Reinert, G, Yan, J, Cucuringu, M |
---|---|
Ձևաչափ: | Conference item |
Լեզու: | English |
Հրապարակվել է: |
Journal of Machine Learning Research
2022
|
Նմանատիպ նյութեր
-
Ranking and synchronization from pairwise measurements via SVD
: d'Aspremont, A, և այլն
Հրապարակվել է: (2021) -
Rank Centrality: Ranking from Pairwise Comparisons
: Negahban, Sahand, և այլն
Հրապարակվել է: (2017) -
Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization
: Cucuringu, M
Հրապարակվել է: (2016) -
MSGNN: a spectral graph neural network based on a novel magnetic signed Laplacian
: He, Y, և այլն
Հրապարակվել է: (2022) -
Pairwise diffusion of preference rankings in social networks
: Brill, M, և այլն
Հրապարակվել է: (2016)