GNNRank: learning global rankings from pairwise comparisons via directed graph neural networks
Recovering global rankings from pairwise comparisons has wide applications from time synchronization to sports team ranking. Pairwise comparisons corresponding to matches in a competition can be construed as edges in a directed graph (digraph), whose nodes represent e.g. competitors with an unknown...
Автори: | He, Y, Gan, Q, Wipf, D, Reinert, G, Yan, J, Cucuringu, M |
---|---|
Формат: | Conference item |
Мова: | English |
Опубліковано: |
Journal of Machine Learning Research
2022
|
Схожі ресурси
Схожі ресурси
-
Ranking and synchronization from pairwise measurements via SVD
за авторством: d'Aspremont, A, та інші
Опубліковано: (2021) -
Rank Centrality: Ranking from Pairwise Comparisons
за авторством: Negahban, Sahand, та інші
Опубліковано: (2017) -
Sync-Rank: Robust ranking, constrained ranking and rank aggregation via eigenvector and SDP synchronization
за авторством: Cucuringu, M
Опубліковано: (2016) -
Ranking Alternatives by Pairwise Comparisons Matrix and Priority Vector
за авторством: Ramík Jaroslav
Опубліковано: (2017-12-01) -
MSGNN: a spectral graph neural network based on a novel magnetic signed Laplacian
за авторством: He, Y, та інші
Опубліковано: (2022)