DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.

DNA methylation is a dynamic epigenetic mark that undergoes extensive changes during differentiation of self-renewing stem cells. However, whether these changes are the cause or consequence of stem cell fate remains unknown. Here, we show that alternative functional programs of hematopoietic stem ce...

Full description

Bibliographic Details
Main Authors: Bröske, A, Vockentanz, L, Kharazi, S, Huska, MR, Mancini, E, Scheller, M, Kuhl, C, Enns, A, Prinz, M, Jaenisch, R, Nerlov, C, Leutz, A, Andrade-Navarro, M, Jacobsen, SE, Rosenbauer, F
Format: Journal article
Language:English
Published: 2009
_version_ 1826263247160868864
author Bröske, A
Vockentanz, L
Kharazi, S
Huska, MR
Mancini, E
Scheller, M
Kuhl, C
Enns, A
Prinz, M
Jaenisch, R
Nerlov, C
Leutz, A
Andrade-Navarro, M
Jacobsen, SE
Rosenbauer, F
author_facet Bröske, A
Vockentanz, L
Kharazi, S
Huska, MR
Mancini, E
Scheller, M
Kuhl, C
Enns, A
Prinz, M
Jaenisch, R
Nerlov, C
Leutz, A
Andrade-Navarro, M
Jacobsen, SE
Rosenbauer, F
author_sort Bröske, A
collection OXFORD
description DNA methylation is a dynamic epigenetic mark that undergoes extensive changes during differentiation of self-renewing stem cells. However, whether these changes are the cause or consequence of stem cell fate remains unknown. Here, we show that alternative functional programs of hematopoietic stem cells (HSCs) are governed by gradual differences in methylation levels. Constitutive methylation is essential for HSC self-renewal but dispensable for homing, cell cycle control and suppression of apoptosis. Notably, HSCs from mice with reduced DNA methyltransferase 1 activity cannot suppress key myeloerythroid regulators and thus can differentiate into myeloerythroid, but not lymphoid, progeny. A similar methylation dosage effect controls stem cell function in leukemia. These data identify DNA methylation as an essential epigenetic mechanism to protect stem cells from premature activation of predominant differentiation programs and suggest that methylation dynamics determine stem cell functions in tissue homeostasis and cancer.
first_indexed 2024-03-06T19:48:42Z
format Journal article
id oxford-uuid:233b1822-df92-450c-a108-e1b2f23b644c
institution University of Oxford
language English
last_indexed 2024-03-06T19:48:42Z
publishDate 2009
record_format dspace
spelling oxford-uuid:233b1822-df92-450c-a108-e1b2f23b644c2022-03-26T11:43:14ZDNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:233b1822-df92-450c-a108-e1b2f23b644cEnglishSymplectic Elements at Oxford2009Bröske, AVockentanz, LKharazi, SHuska, MRMancini, EScheller, MKuhl, CEnns, APrinz, MJaenisch, RNerlov, CLeutz, AAndrade-Navarro, MJacobsen, SERosenbauer, FDNA methylation is a dynamic epigenetic mark that undergoes extensive changes during differentiation of self-renewing stem cells. However, whether these changes are the cause or consequence of stem cell fate remains unknown. Here, we show that alternative functional programs of hematopoietic stem cells (HSCs) are governed by gradual differences in methylation levels. Constitutive methylation is essential for HSC self-renewal but dispensable for homing, cell cycle control and suppression of apoptosis. Notably, HSCs from mice with reduced DNA methyltransferase 1 activity cannot suppress key myeloerythroid regulators and thus can differentiate into myeloerythroid, but not lymphoid, progeny. A similar methylation dosage effect controls stem cell function in leukemia. These data identify DNA methylation as an essential epigenetic mechanism to protect stem cells from premature activation of predominant differentiation programs and suggest that methylation dynamics determine stem cell functions in tissue homeostasis and cancer.
spellingShingle Bröske, A
Vockentanz, L
Kharazi, S
Huska, MR
Mancini, E
Scheller, M
Kuhl, C
Enns, A
Prinz, M
Jaenisch, R
Nerlov, C
Leutz, A
Andrade-Navarro, M
Jacobsen, SE
Rosenbauer, F
DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.
title DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.
title_full DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.
title_fullStr DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.
title_full_unstemmed DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.
title_short DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction.
title_sort dna methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction
work_keys_str_mv AT broskea dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT vockentanzl dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT kharazis dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT huskamr dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT mancinie dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT schellerm dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT kuhlc dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT ennsa dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT prinzm dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT jaenischr dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT nerlovc dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT leutza dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT andradenavarrom dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT jacobsense dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction
AT rosenbauerf dnamethylationprotectshematopoieticstemcellmultipotencyfrommyeloerythroidrestriction