Homogenization for advection-diffusion in a perforated domain
The volume of a Wiener sausage constructed from a diffusion process with periodic, mean-zero, divergence-free velocity field, in dimension 3 or more, is shown to have a non-random and positive asymptotic rate of growth. This is used to establish the existence of a homogenized limit for such a diffus...
Κύριοι συγγραφείς: | Haynes, P, Hoang, V, Norris, J, Zygalakis, K |
---|---|
Μορφή: | Journal article |
Έκδοση: |
2010
|
Παρόμοια τεκμήρια
-
Nodal domain intergration model of two-dimensional advection- diffusion prtocesses /
ανά: 432067 Hromadka, Theodore V.
Έκδοση: (1984) -
Asymptotic analysis of the steady advection-diffusion problem in axial domains
ανά: Fernando A. Morales
Έκδοση: (2023-03-01) -
Shape Reconstruction for Unsteady Advection-Diffusion Problems by Domain Derivative Method
ανά: Wenjing Yan, κ.ά.
Έκδοση: (2014-01-01) -
Root growth: homogenization in domains with time dependent partial perforations
ανά: Capdeboscq, Y, κ.ά.
Έκδοση: (2012) -
Homogenization of linearized elasticity systems with traction condition in perforated domains
ανά: Mohamed El Hajji
Έκδοση: (1999-10-01)