Homogenization for advection-diffusion in a perforated domain
The volume of a Wiener sausage constructed from a diffusion process with periodic, mean-zero, divergence-free velocity field, in dimension 3 or more, is shown to have a non-random and positive asymptotic rate of growth. This is used to establish the existence of a homogenized limit for such a diffus...
Huvudupphovsmän: | Haynes, P, Hoang, V, Norris, J, Zygalakis, K |
---|---|
Materialtyp: | Journal article |
Publicerad: |
2010
|
Liknande verk
-
Nodal domain intergration model of two-dimensional advection- diffusion prtocesses /
av: 432067 Hromadka, Theodore V.
Publicerad: (1984) -
Asymptotic analysis of the steady advection-diffusion problem in axial domains
av: Fernando A. Morales
Publicerad: (2023-03-01) -
Shape Reconstruction for Unsteady Advection-Diffusion Problems by Domain Derivative Method
av: Wenjing Yan, et al.
Publicerad: (2014-01-01) -
Root growth: homogenization in domains with time dependent partial perforations
av: Capdeboscq, Y, et al.
Publicerad: (2012) -
Homogenization of linearized elasticity systems with traction condition in perforated domains
av: Mohamed El Hajji
Publicerad: (1999-10-01)