Efficiently solving convex relaxations for MAP estimation
<p>The problem of obtaining the maximum <em>a posteriori</em> (MAP) estimate of a discrete random field is of fundamental importance in many areas of Computer Science. In this work, we build on the tree reweighted message passing (TRW) framework of (Kolmogorov, 20...
Hlavní autoři: | Kumar, MP, Torr, PHS |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Association for Computing Machinery
2008
|
Podobné jednotky
-
An analysis of convex relaxations for MAP estimation
Autor: Kumar, MP, a další
Vydáno: (2008) -
Analyzing convex relaxations for map estimation
Autor: Kumar, MP, a další
Vydáno: (2011) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
Autor: Pawan Kumar, M, a další
Vydáno: (2009) -
Solving Markov random fields using second order cone programming relaxations
Autor: Kumar, MP, a další
Vydáno: (2006) -
Improved moves for truncated convex models
Autor: Kumar, MP, a další
Vydáno: (2009)