Efficiently solving convex relaxations for MAP estimation
<p>The problem of obtaining the maximum <em>a posteriori</em> (MAP) estimate of a discrete random field is of fundamental importance in many areas of Computer Science. In this work, we build on the tree reweighted message passing (TRW) framework of (Kolmogorov, 20...
Main Authors: | Kumar, MP, Torr, PHS |
---|---|
Format: | Conference item |
Sprog: | English |
Udgivet: |
Association for Computing Machinery
2008
|
Lignende værker
-
An analysis of convex relaxations for MAP estimation
af: Kumar, MP, et al.
Udgivet: (2008) -
Analyzing convex relaxations for map estimation
af: Kumar, MP, et al.
Udgivet: (2011) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
af: Pawan Kumar, M, et al.
Udgivet: (2009) -
Solving Markov random fields using second order cone programming relaxations
af: Kumar, MP, et al.
Udgivet: (2006) -
Improved moves for truncated convex models
af: Kumar, MP, et al.
Udgivet: (2009)