Efficiently solving convex relaxations for MAP estimation
<p>The problem of obtaining the maximum <em>a posteriori</em> (MAP) estimate of a discrete random field is of fundamental importance in many areas of Computer Science. In this work, we build on the tree reweighted message passing (TRW) framework of (Kolmogorov, 20...
Hauptverfasser: | Kumar, MP, Torr, PHS |
---|---|
Format: | Conference item |
Sprache: | English |
Veröffentlicht: |
Association for Computing Machinery
2008
|
Ähnliche Einträge
-
An analysis of convex relaxations for MAP estimation
von: Kumar, MP, et al.
Veröffentlicht: (2008) -
Analyzing convex relaxations for map estimation
von: Kumar, MP, et al.
Veröffentlicht: (2011) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
von: Pawan Kumar, M, et al.
Veröffentlicht: (2009) -
Solving Markov random fields using second order cone programming relaxations
von: Kumar, MP, et al.
Veröffentlicht: (2006) -
Improved moves for truncated convex models
von: Kumar, MP, et al.
Veröffentlicht: (2009)