Efficiently solving convex relaxations for MAP estimation
<p>The problem of obtaining the maximum <em>a posteriori</em> (MAP) estimate of a discrete random field is of fundamental importance in many areas of Computer Science. In this work, we build on the tree reweighted message passing (TRW) framework of (Kolmogorov, 20...
Auteurs principaux: | Kumar, MP, Torr, PHS |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
Association for Computing Machinery
2008
|
Documents similaires
-
An analysis of convex relaxations for MAP estimation
par: Kumar, MP, et autres
Publié: (2008) -
Analyzing convex relaxations for map estimation
par: Kumar, MP, et autres
Publié: (2011) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
par: Pawan Kumar, M, et autres
Publié: (2009) -
Solving Markov random fields using second order cone programming relaxations
par: Kumar, MP, et autres
Publié: (2006) -
Improved moves for truncated convex models
par: Kumar, MP, et autres
Publié: (2009)