Efficiently solving convex relaxations for MAP estimation
<p>The problem of obtaining the maximum <em>a posteriori</em> (MAP) estimate of a discrete random field is of fundamental importance in many areas of Computer Science. In this work, we build on the tree reweighted message passing (TRW) framework of (Kolmogorov, 20...
Váldodahkkit: | Kumar, MP, Torr, PHS |
---|---|
Materiálatiipa: | Conference item |
Giella: | English |
Almmustuhtton: |
Association for Computing Machinery
2008
|
Geahča maid
-
An analysis of convex relaxations for MAP estimation
Dahkki: Kumar, MP, et al.
Almmustuhtton: (2008) -
Analyzing convex relaxations for map estimation
Dahkki: Kumar, MP, et al.
Almmustuhtton: (2011) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
Dahkki: Pawan Kumar, M, et al.
Almmustuhtton: (2009) -
Solving Markov random fields using second order cone programming relaxations
Dahkki: Kumar, MP, et al.
Almmustuhtton: (2006) -
Improved moves for truncated convex models
Dahkki: Kumar, MP, et al.
Almmustuhtton: (2009)