Efficiently solving convex relaxations for MAP estimation
<p>The problem of obtaining the maximum <em>a posteriori</em> (MAP) estimate of a discrete random field is of fundamental importance in many areas of Computer Science. In this work, we build on the tree reweighted message passing (TRW) framework of (Kolmogorov, 20...
Huvudupphovsmän: | Kumar, MP, Torr, PHS |
---|---|
Materialtyp: | Conference item |
Språk: | English |
Publicerad: |
Association for Computing Machinery
2008
|
Liknande verk
-
An analysis of convex relaxations for MAP estimation
av: Kumar, MP, et al.
Publicerad: (2008) -
Analyzing convex relaxations for map estimation
av: Kumar, MP, et al.
Publicerad: (2011) -
An analysis of convex relaxations for MAP estimation of discrete MRFs
av: Pawan Kumar, M, et al.
Publicerad: (2009) -
Solving Markov random fields using second order cone programming relaxations
av: Kumar, MP, et al.
Publicerad: (2006) -
Improved moves for truncated convex models
av: Kumar, MP, et al.
Publicerad: (2009)