Possible ohmic mechanisms of Ag/indium tin oxide p-type contacts for high-brightness GaN -Based light emitting diodes

We have investigated the Ag (1 nm)indium tin oxide (ITO) (200 nm) contacts by scanning transmission electron microscopy (STEM), Auger electron spectroscopy (AES), and X-ray photoemission spectroscopy (XPS) to understand its ohmic mechanism. The Ag/ITO contacts exhibit ohmic behaviors, when annealed...

Full description

Bibliographic Details
Main Authors: Song, J, Hong, H, Jeon, J, Sohn, J, Jang, J, Seong, T
Format: Journal article
Language:English
Published: 2008
Description
Summary:We have investigated the Ag (1 nm)indium tin oxide (ITO) (200 nm) contacts by scanning transmission electron microscopy (STEM), Auger electron spectroscopy (AES), and X-ray photoemission spectroscopy (XPS) to understand its ohmic mechanism. The Ag/ITO contacts exhibit ohmic behaviors, when annealed at 400-600°C. The effective Schottky barrier heights depend on the annealing temperatures. STEM and AES results reveal the formation of Ag nanodots (5-35 nm across) and Ga-Ag solid solution. Based on the STEM, AES, and XPS results, the ohmic contact formation is described in terms of the formation of the Ga-Ag solid solution and the inhomogeneous interfaces with nanodots. © 2007 The Electrochemical Society.