Alteration of the quaternary structure of glutamate dehydrogenase from Clostridium symbiosum by a single mutation distant from the subunit interfaces.

X-ray crystallographic studies have previously shown that glutamate dehydrogenase from Clostridium symbiosum is a homohexamer. Mutation of the active-site aspartate-165 to histidine causes an alteration in the structural properties of the enzyme. The mutant enzyme, D165H exists predominantly as a si...

Full description

Bibliographic Details
Main Authors: Dean, J, Cölfen, H, Harding, SE, Rice, D, Engel, P
Format: Journal article
Language:English
Published: 1997
Description
Summary:X-ray crystallographic studies have previously shown that glutamate dehydrogenase from Clostridium symbiosum is a homohexamer. Mutation of the active-site aspartate-165 to histidine causes an alteration in the structural properties of the enzyme. The mutant enzyme, D165H exists predominantly as a single species of lower molecular mass than the wild-type enzyme as indicated by gel filtration and sedimentation velocity analysis. The latter technique gives an S20,w value for D165H of (6.07 +/- 0.01)S which compares with (11.08 +/- 0.01)S for the wild-type, indicative of alteration of the homohexameric quaternary structure of the native enzyme to a dimeric form, a result confirmed by sedimentation equilibrium experiments. Further support for this is provided by chemical modification by Ellman's reagent of cysteine-144 in the mutant, a residue which is buried at the dimer-dimer interface in the wild-type enzyme and is normally inaccessible to modification. The results suggest a possible structural route for communication between the active sites and subunit interfaces which may be important for relaying signals between subunits in allosteric regulation of the enzyme.