Random fractal strings: their zeta functions, complex dimensions and spectral asymptotics
In this paper a string is a sequence of positive non-increasing real numbers which sums to one. For our purposes a fractal string is a string formed from the lengths of removed sub-intervals created by a recursive decomposition of the unit interval. By using the so called complex dimensions of the...
Hlavní autoři: | Hambly, B, Lapidus, M |
---|---|
Médium: | Journal article |
Vydáno: |
2003
|
Podobné jednotky
-
Random fractal strings: Their zeta functions, complex dimensions and spectral asymptotics
Autor: Hambly, B, a další
Vydáno: (2006) -
Fractal geometry, complex dimensions and zeta functions : [electronic book] : geometry and spectra of fractal strings /
Autor: 185638 Lapidus, Michel L., a další
Vydáno: (2006) -
Asymptotics for the spectral and walk dimension as fractals approach Euclidean space
Autor: Hambly, B, a další
Vydáno: (2002) -
Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem
Autor: Hambly, B, a další
Vydáno: (2003) -
Heat kernels and spectral asymptotics for some random Sierpinski gaskets
Autor: Hambly, B
Vydáno: (2000)