Random fractal strings: their zeta functions, complex dimensions and spectral asymptotics
In this paper a string is a sequence of positive non-increasing real numbers which sums to one. For our purposes a fractal string is a string formed from the lengths of removed sub-intervals created by a recursive decomposition of the unit interval. By using the so called complex dimensions of the...
主要な著者: | Hambly, B, Lapidus, M |
---|---|
フォーマット: | Journal article |
出版事項: |
2003
|
類似資料
類似資料
-
Random fractal strings: Their zeta functions, complex dimensions and spectral asymptotics
著者:: Hambly, B, 等
出版事項: (2006) -
Fractal geometry, complex dimensions and zeta functions : [electronic book] : geometry and spectra of fractal strings /
著者:: 185638 Lapidus, Michel L., 等
出版事項: (2006) -
Asymptotics for the spectral and walk dimension as fractals approach Euclidean space
著者:: Hambly, B, 等
出版事項: (2002) -
Finitely ramified graph-directed fractals, spectral asymptotics and the multidimensional renewal theorem
著者:: Hambly, B, 等
出版事項: (2003) -
Heat kernels and spectral asymptotics for some random Sierpinski gaskets
著者:: Hambly, B
出版事項: (2000)