GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre...
主要な著者: | Almosallam, I, Jarvis, M, Roberts, S |
---|---|
フォーマット: | Journal article |
出版事項: |
Oxford University Press
2016
|
類似資料
-
GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
著者:: Almosallam, I, 等
出版事項: (2016) -
Improving Photometric Redshift Estimation using GPz: size information,
post processing and improved photometry
著者:: Gomes, Z, 等
出版事項: (2017) -
A Sparse Gaussian Process Framework for Photometric Redshift Estimation
著者:: Almosallam, I, 等
出版事項: (2015) -
Augmenting machine learning photometric redshifts with Gaussian mixture models
著者:: Hatfield, PW, 等
出版事項: (2020) -
Photometric redshift estimation using Gaussian processes
著者:: Bonfield, D, 等
出版事項: (2010)