GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre...
Main Authors: | Almosallam, I, Jarvis, M, Roberts, S |
---|---|
פורמט: | Journal article |
יצא לאור: |
Oxford University Press
2016
|
פריטים דומים
-
GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
מאת: Almosallam, I, et al.
יצא לאור: (2016) -
Improving Photometric Redshift Estimation using GPz: size information,
post processing and improved photometry
מאת: Gomes, Z, et al.
יצא לאור: (2017) -
A Sparse Gaussian Process Framework for Photometric Redshift Estimation
מאת: Almosallam, I, et al.
יצא לאור: (2015) -
Augmenting machine learning photometric redshifts with Gaussian mixture models
מאת: Hatfield, PW, et al.
יצא לאור: (2020) -
Photometric redshift estimation using Gaussian processes
מאת: Bonfield, D, et al.
יצא לאור: (2010)