GPz: non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
The next generation of cosmology experiments will be required to use photometric redshifts rather than spectroscopic redshifts. Obtaining accurate and well-characterized photometric redshift distributions is therefore critical for Euclid, the Large Synoptic Survey Telescope and the Square Kilometre...
Главные авторы: | Almosallam, I, Jarvis, M, Roberts, S |
---|---|
Формат: | Journal article |
Опубликовано: |
Oxford University Press
2016
|
Схожие документы
-
GPz: Non-stationary sparse Gaussian processes for heteroscedastic uncertainty estimation in photometric redshifts
по: Almosallam, I, и др.
Опубликовано: (2016) -
Improving Photometric Redshift Estimation using GPz: size information,
post processing and improved photometry
по: Gomes, Z, и др.
Опубликовано: (2017) -
A Sparse Gaussian Process Framework for Photometric Redshift Estimation
по: Almosallam, I, и др.
Опубликовано: (2015) -
Augmenting machine learning photometric redshifts with Gaussian mixture models
по: Hatfield, PW, и др.
Опубликовано: (2020) -
Photometric redshift estimation using Gaussian processes
по: Bonfield, D, и др.
Опубликовано: (2010)