Multiscale graph convolutional networks for cardiac motion analysis
We propose a multiscale spatio-temporal graph convolutional network (MST-GCN) approach to learn the left ventricular (LV) motion patterns from cardiac MR image sequences. The MST-GCN follows an encoder-decoder framework. The encoder uses a sequence of multiscale graph computation units (MGCUs). The...
Prif Awduron: | Lu, P, Bai, W, Rueckert, D, Noble, JA |
---|---|
Fformat: | Conference item |
Iaith: | English |
Cyhoeddwyd: |
Springer
2021
|
Eitemau Tebyg
-
Dynamic spatio-temporal graph convolutional networks for cardiac motion analysis
gan: Lu, P, et al.
Cyhoeddwyd: (2021) -
Modelling cardiac motion via spatio-temporal graph convolutional networks to boost the diagnosis of heart conditions
gan: Lu, P, et al.
Cyhoeddwyd: (2021) -
Going deeper into cardiac motion analysis to model fine spatio-temporal features
gan: Lu, P, et al.
Cyhoeddwyd: (2020) -
Attention multihop graph and multiscale convolutional fusion network for hyperspectral image classification
gan: Zhou, Hao, et al.
Cyhoeddwyd: (2023) -
Joint learning of motion estimation and segmentation for cardiac MR image sequences
gan: Qin, C, et al.
Cyhoeddwyd: (2018)