Deep residual reinforcement learning

<p>We revisit residual algorithms in both model-free and model-based reinforcement learning settings. We propose the bidirectional target network technique to stabilize residual algorithms, yielding a residual version of DDPG that significantly outperforms vanilla DDPG in the DeepMind Control...

Ausführliche Beschreibung

Bibliographische Detailangaben
Hauptverfasser: Zhang, S, Boehmer, W, Whiteson, S
Format: Conference item
Sprache:English
Veröffentlicht: International Foundation for Autonomous Agents and Multiagent Systems 2020