Lipschitz continuity and Bochner-Eells-Sampson inequality for harmonic maps from RCD(K,N) spaces to CAT(0) spaces
We establish Lipschitz regularity of harmonic maps from RCD(K, N) metric measure spaces with lower Ricci curvature bounds and dimension upper bounds in synthetic sense with values into CAT(0) metric spaces with non-positive sectional curvature. Under the same assumptions, we obtain a Bochner-Eells-S...
Hlavní autoři: | Mondino, A, Semola, D |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Johns Hopkins University Press
2023
|
Podobné jednotky
-
The equality case in Cheeger's and Buser's inequalities on RCD spaces
Autor: De Ponti, N, a další
Vydáno: (2021) -
On the notion of Laplacian bounds on RCD spaces and applications
Autor: Gigli, N, a další
Vydáno: (2023) -
Monotonicity formula and stratification of the singular set of perimeter minimizers in RCD spaces
Autor: Fiorani, F, a další
Vydáno: (2023) -
Monotonicity formula and stratification of the singular set of perimeter minimizers in RCD spaces
Autor: Fiorani, F, a další
Vydáno: (2025) -
Rigidity of the 1-Bakry–Émery inequality and sets of finite perimeter in RCD spaces
Autor: Ambrosio, L, a další
Vydáno: (2019)