Metastable dark States enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution.

Current far-field optical nanoscopy schemes overcome the diffraction barrier by ensuring that adjacent features assume different states upon detection. Ideally, the transition between these states can be repeated endlessly and, if performed optically, with low levels of light. Here we report such op...

Descrición completa

Detalles Bibliográficos
Main Authors: Han, K, Kim, S, Eggeling, C, Hell, S
Formato: Journal article
Idioma:English
Publicado: 2010
Descripción
Summary:Current far-field optical nanoscopy schemes overcome the diffraction barrier by ensuring that adjacent features assume different states upon detection. Ideally, the transition between these states can be repeated endlessly and, if performed optically, with low levels of light. Here we report such optical switching, realized by pairing the luminescent triplet and a long-lived dark state of diamond color centers, enabling their imaging with a resolution >10 times beyond the diffraction barrier (<20 nm).