Local projection finite element stabilization for the generalized Stokes problem

We analyze pressure stabilized finite element methods for the solution of the generalized Stokes problem and investigate their stability and convergence properties. An important feature of the method is that the pressure gradient unknowns can be eliminated locally thus leading to a decoupled system...

詳細記述

書誌詳細
主要な著者: Nafa, K, Wathen, A
フォーマット: Report
出版事項: Unspecified 2008
その他の書誌記述
要約:We analyze pressure stabilized finite element methods for the solution of the generalized Stokes problem and investigate their stability and convergence properties. An important feature of the method is that the pressure gradient unknowns can be eliminated locally thus leading to a decoupled system of equations. Although stability of the method has been established, for the homogeneous Stokes equations, the proof given here is based on the existence of a special interpolant with additional orthogonal property with respect to the projection space. This, makes it a lot simpler and more attractive. The resulting stabilized method is shown to lead to optimal rates of convergence for both velocity and pressure approximations.