Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber

Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system1,2,3,4. Advances in wavefront-shaping methods and computational power have recently allowed for...

Full description

Bibliographic Details
Main Authors: Vasquez-Lopez, S, Turcotte, R, Koren, V, Ploschner, M, Padamsey, Z, Booth, M, Čižmár, T, Emptage, N
Format: Journal article
Published: Springer Nature 2018
Description
Summary:Achieving intravital optical imaging with diffraction-limited spatial resolution of deep-brain structures represents an important step toward the goal of understanding the mammalian central nervous system1,2,3,4. Advances in wavefront-shaping methods and computational power have recently allowed for a novel approach to high-resolution imaging, utilizing deterministic light propagation through optically complex media and, of particular importance for this work, multimode optical fibers (MMFs)5,6,7. We report a compact and highly optimized approach for minimally invasive in vivo brain imaging applications. The volume of tissue lesion was reduced by more than 100-fold, while preserving diffraction-limited imaging performance utilizing wavefront control of light propagation through a single 50-μm-core MMF. Here, we demonstrated high-resolution fluorescence imaging of subcellular neuronal structures, dendrites and synaptic specializations, in deep-brain regions of living mice, as well as monitored stimulus-driven functional Ca2+ responses. These results represent a major breakthrough in the compromise between high-resolution imaging and tissue damage, heralding new possibilities for deep-brain imaging in vivo.