nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems
We describe nNPipe for the automated analysis of morphologically diverse catalyst materials. Automated imaging routines and direct-electron detectors have enabled the collection of large data stacks over a wide range of sample positions at high temporal resolution. Simultaneously, traditional image...
Hlavní autoři: | Treder, K, Huang, C, Bell, C, Slater, T, Schuster, M, Ozkaya, D, Kim, J, Kirkland, A |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Springer Nature
2023
|
Podobné jednotky
-
nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems
Autor: Kevin P. Treder, a další
Vydáno: (2023-02-01) -
Automated analysis of heterogeneous catalyst materials using deep learning
Autor: Treder, KP
Vydáno: (2022) -
Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
Autor: Bell, CG, a další
Vydáno: (2022) -
Automated Design of the Deep Neural Network Pipeline
Autor: Mia Gerber, a další
Vydáno: (2022-11-01) -
Pipeline system automation and control /
Autor: 171133 Yoon, Mike S., a další
Vydáno: (2007)