nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems
We describe nNPipe for the automated analysis of morphologically diverse catalyst materials. Automated imaging routines and direct-electron detectors have enabled the collection of large data stacks over a wide range of sample positions at high temporal resolution. Simultaneously, traditional image...
Príomhchruthaitheoirí: | Treder, K, Huang, C, Bell, C, Slater, T, Schuster, M, Ozkaya, D, Kim, J, Kirkland, A |
---|---|
Formáid: | Journal article |
Teanga: | English |
Foilsithe / Cruthaithe: |
Springer Nature
2023
|
Míreanna comhchosúla
Míreanna comhchosúla
-
nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems
de réir: Kevin P. Treder, et al.
Foilsithe / Cruthaithe: (2023-02-01) -
Automated analysis of heterogeneous catalyst materials using deep learning
de réir: Treder, KP
Foilsithe / Cruthaithe: (2022) -
Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
de réir: Bell, CG, et al.
Foilsithe / Cruthaithe: (2022) -
Automated Design of the Deep Neural Network Pipeline
de réir: Mia Gerber, et al.
Foilsithe / Cruthaithe: (2022-11-01) -
Pipeline system automation and control /
de réir: 171133 Yoon, Mike S., et al.
Foilsithe / Cruthaithe: (2007)