nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems
We describe nNPipe for the automated analysis of morphologically diverse catalyst materials. Automated imaging routines and direct-electron detectors have enabled the collection of large data stacks over a wide range of sample positions at high temporal resolution. Simultaneously, traditional image...
Үндсэн зохиолчид: | Treder, K, Huang, C, Bell, C, Slater, T, Schuster, M, Ozkaya, D, Kim, J, Kirkland, A |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Springer Nature
2023
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
nNPipe: a neural network pipeline for automated analysis of morphologically diverse catalyst systems
-н: Kevin P. Treder, зэрэг
Хэвлэсэн: (2023-02-01) -
Automated analysis of heterogeneous catalyst materials using deep learning
-н: Treder, KP
Хэвлэсэн: (2022) -
Trainable segmentation for transmission electron microscope images of inorganic nanoparticles
-н: Bell, CG, зэрэг
Хэвлэсэн: (2022) -
Automated Design of the Deep Neural Network Pipeline
-н: Mia Gerber, зэрэг
Хэвлэсэн: (2022-11-01) -
Pipeline system automation and control /
-н: 171133 Yoon, Mike S., зэрэг
Хэвлэсэн: (2007)