Charge transport and efficiency in photovoltaic devices based on polyfluorene blends
Polymer blends allow control of microstructure in donor-acceptor photovoltaic devices. Here we present measurements of devices containing polyfluorene blend layers of different thicknesses, and we are able to extract characteristic transport lengths for electrons and holes. We also present analytica...
Main Authors: | , , , , |
---|---|
Format: | Conference item |
Published: |
2004
|
Summary: | Polymer blends allow control of microstructure in donor-acceptor photovoltaic devices. Here we present measurements of devices containing polyfluorene blend layers of different thicknesses, and we are able to extract characteristic transport lengths for electrons and holes. We also present analytical and numerical modeling of single-layer and bilayer photovoltaic devices, which demonstrates the importance of bound polaron pairs formed after the initial electron transfer from donor to acceptor. Field-assisted dissociation of these polaron pairs is a critical process in determining device performance. |
---|