The role of the primate frontopolar cortex in mnemonic and choice behaviour

<p>The role of the primate frontopolar cortex (FPC) has been investigated using human neuroimaging, lesion and disruption techniques. The results of these investigations have led to a variety of theories regarding the function of this region. It has been linked to the formation of task sets, t...

Full description

Bibliographic Details
Main Authors: Browncross, H, Helen Anna Browncross
Other Authors: Buckley, M
Format: Thesis
Language:English
Published: 2014
Subjects:
Description
Summary:<p>The role of the primate frontopolar cortex (FPC) has been investigated using human neuroimaging, lesion and disruption techniques. The results of these investigations have led to a variety of theories regarding the function of this region. It has been linked to the formation of task sets, the performance of multiple tasks, reasoning, context-specific memory (including episodic memory, prospective memory and source memory), attention to internally or externally generated information, mentalising and decision-making. It has not previously been possible to study this area using animal lesion techniques. Here, behavioural experiments conducted using non-human primates (rhesus macaque monkeys) who have received lesions to the frontal pole investigate the contribution of this region to context-specific memory, decision-making and social cognition. Functional magnetic resonance imaging (fMRI) is used to investigate changes in functional network connectivity which occur after lesions to this region. A long-lasting impairment is observed in contextual memory judgements (specifically, how recently a stimulus was encountered) after lesions to the frontal pole. An analysis of the influence of the outcomes of previous choices on behaviour on an analogue to the Wisconsin Card Sorting Test (WCST) indicate that monkeys with lesions to area 10 may be less influenced by the outcomes of an extended history of rewards than control animals. Long-lasting widespread disruption to functional networks after lesions to this region indicate that indirect anatomical connections from this region to posterior areas play a crucial role in the normal functioning of posterior networks. </p>