Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach

<p><strong>Background</strong> A better understanding of which children are likely to die during acute illness will help clinicians and policy makers target resources at the most vulnerable children. We used machine learning to characterise mortality in the 30-days following admiss...

Full description

Bibliographic Details
Main Authors: Diallo, AH, Sayeem Bin Shahid, ASM, Khan, AF, Saleem, AF, Singa, BO, Gnoumou, BS, Tigoi, C, Otieno, CA, Bourdon, C, Oduol, CO, Lancioni, CL, Manyasi, C, McGrath, CJ, Maronga, C, Lwanga, C, Brals, D, Ahmed, D, Mondal, D, Denno, DM, Mangale, DI, Chimezi, E, Mbale, E, Mupere, E, Mamun, GMS, Ouedraogo, I, Githinji, G, Berkley, JA, Njirammadzi, J, Mukisa, J, Thitiri, J, Haggstrom, J, Carreon, JD, Walson, JL, Jemutai, J, Tickell, KD, Shahrin, L, Mallewa, M, Hossain, MI, Chisti, MJ, Timbwa, M, Mburu, M, Ngari, MM, Ngao, N, Aber, P, Harawa, PP, Sukhtankar, P, Bandsma, RHJ, Bamouni, RM, Molyneux, S, Feldman, S
Format: Journal article
Language:English
Published: Elsevier 2023
_version_ 1797110269984374784
author Diallo, AH
Sayeem Bin Shahid, ASM
Khan, AF
Saleem, AF
Singa, BO
Gnoumou, BS
Tigoi, C
Otieno, CA
Bourdon, C
Oduol, CO
Lancioni, CL
Manyasi, C
McGrath, CJ
Maronga, C
Lwanga, C
Brals, D
Ahmed, D
Mondal, D
Denno, DM
Mangale, DI
Chimezi, E
Mbale, E
Mupere, E
Mamun, GMS
Ouedraogo, I
Githinji, G
Berkley, JA
Njirammadzi, J
Mukisa, J
Thitiri, J
Haggstrom, J
Carreon, JD
Walson, JL
Jemutai, J
Tickell, KD
Shahrin, L
Mallewa, M
Hossain, MI
Chisti, MJ
Timbwa, M
Mburu, M
Ngari, MM
Ngao, N
Aber, P
Harawa, PP
Sukhtankar, P
Bandsma, RHJ
Bamouni, RM
Molyneux, S
Feldman, S
author_facet Diallo, AH
Sayeem Bin Shahid, ASM
Khan, AF
Saleem, AF
Singa, BO
Gnoumou, BS
Tigoi, C
Otieno, CA
Bourdon, C
Oduol, CO
Lancioni, CL
Manyasi, C
McGrath, CJ
Maronga, C
Lwanga, C
Brals, D
Ahmed, D
Mondal, D
Denno, DM
Mangale, DI
Chimezi, E
Mbale, E
Mupere, E
Mamun, GMS
Ouedraogo, I
Githinji, G
Berkley, JA
Njirammadzi, J
Mukisa, J
Thitiri, J
Haggstrom, J
Carreon, JD
Walson, JL
Jemutai, J
Tickell, KD
Shahrin, L
Mallewa, M
Hossain, MI
Chisti, MJ
Timbwa, M
Mburu, M
Ngari, MM
Ngao, N
Aber, P
Harawa, PP
Sukhtankar, P
Bandsma, RHJ
Bamouni, RM
Molyneux, S
Feldman, S
author_sort Diallo, AH
collection OXFORD
description <p><strong>Background</strong> A better understanding of which children are likely to die during acute illness will help clinicians and policy makers target resources at the most vulnerable children. We used machine learning to characterise mortality in the 30-days following admission and the 180-days after discharge from nine hospitals in low and middle-income countries (LMIC).</p> <p><strong>Methods</strong> A cohort of 3101 children aged 2–24 months were recruited at admission to hospital for any acute illness in Bangladesh (Dhaka and Matlab Hospitals), Pakistan (Civil Hospital Karachi), Kenya (Kilifi, Mbagathi, and Migori Hospitals), Uganda (Mulago Hospital), Malawi (Queen Elizabeth Central Hospital), and Burkina Faso (Banfora Hospital) from November 2016 to January 2019. To record mortality, children were observed during their hospitalisation and for 180 days post-discharge. Extreme gradient boosted models of death within 30 days of admission and mortality in the 180 days following discharge were built. Clusters of mortality sharing similar characteristics were identified from the models using Shapley additive values with spectral clustering.</p> <p><strong>Findings</strong> Anthropometric and laboratory parameters were the most influential predictors of both 30-day and post-discharge mortality. No WHO/IMCI syndromes were among the 25 most influential mortality predictors of mortality. For 30-day mortality, two lower-risk clusters (N = 1915, 61%) included children with higher-than-average anthropometry (1% died, 95% CI: 0–2), and children without signs of severe illness (3% died, 95% CI: 2–4%). The two highest risk 30-day mortality clusters (N = 118, 4%) were characterised by high urea and creatinine (70% died, 95% CI: 62–82%); and nutritional oedema with low platelets and reduced consciousness (97% died, 95% CI: 92–100%). For post-discharge mortality risk, two low-risk clusters (N = 1753, 61%) were defined by higher-than-average anthropometry (0% died, 95% CI: 0–1%), and gastroenteritis with lower-than-average anthropometry and without major laboratory abnormalities (0% died, 95% CI: 0–1%). Two highest risk post-discharge clusters (N = 267, 9%) included children leaving against medical advice (30% died, 95% CI: 25–37%), and severely-low anthropometry with signs of illness at discharge (46% died, 95% CI: 34–62%).</p> <p><strong>Interpretation</strong> WHO clinical syndromes are not sufficient at predicting risk. Integrating basic laboratory features such as urea, creatinine, red blood cell, lymphocyte and platelet counts into guidelines may strengthen efforts to identify high-risk children during paediatric hospitalisations.</p> <p><strong>Funding</strong> Bill & Melinda Gates Foundation OPP1131320.</p>
first_indexed 2024-03-07T07:52:34Z
format Journal article
id oxford-uuid:286d8b3e-a52a-4de5-8655-54be4664d8dc
institution University of Oxford
language English
last_indexed 2024-03-07T07:52:34Z
publishDate 2023
publisher Elsevier
record_format dspace
spelling oxford-uuid:286d8b3e-a52a-4de5-8655-54be4664d8dc2023-07-31T14:53:01ZCharacterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approachJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:286d8b3e-a52a-4de5-8655-54be4664d8dcEnglishSymplectic ElementsElsevier2023Diallo, AHSayeem Bin Shahid, ASMKhan, AFSaleem, AFSinga, BOGnoumou, BSTigoi, COtieno, CABourdon, COduol, COLancioni, CLManyasi, CMcGrath, CJMaronga, CLwanga, CBrals, DAhmed, DMondal, DDenno, DMMangale, DIChimezi, EMbale, EMupere, EMamun, GMSOuedraogo, IGithinji, GBerkley, JANjirammadzi, JMukisa, JThitiri, JHaggstrom, JCarreon, JDWalson, JLJemutai, JTickell, KDShahrin, LMallewa, MHossain, MIChisti, MJTimbwa, MMburu, MNgari, MMNgao, NAber, PHarawa, PPSukhtankar, PBandsma, RHJBamouni, RMMolyneux, SFeldman, S<p><strong>Background</strong> A better understanding of which children are likely to die during acute illness will help clinicians and policy makers target resources at the most vulnerable children. We used machine learning to characterise mortality in the 30-days following admission and the 180-days after discharge from nine hospitals in low and middle-income countries (LMIC).</p> <p><strong>Methods</strong> A cohort of 3101 children aged 2–24 months were recruited at admission to hospital for any acute illness in Bangladesh (Dhaka and Matlab Hospitals), Pakistan (Civil Hospital Karachi), Kenya (Kilifi, Mbagathi, and Migori Hospitals), Uganda (Mulago Hospital), Malawi (Queen Elizabeth Central Hospital), and Burkina Faso (Banfora Hospital) from November 2016 to January 2019. To record mortality, children were observed during their hospitalisation and for 180 days post-discharge. Extreme gradient boosted models of death within 30 days of admission and mortality in the 180 days following discharge were built. Clusters of mortality sharing similar characteristics were identified from the models using Shapley additive values with spectral clustering.</p> <p><strong>Findings</strong> Anthropometric and laboratory parameters were the most influential predictors of both 30-day and post-discharge mortality. No WHO/IMCI syndromes were among the 25 most influential mortality predictors of mortality. For 30-day mortality, two lower-risk clusters (N = 1915, 61%) included children with higher-than-average anthropometry (1% died, 95% CI: 0–2), and children without signs of severe illness (3% died, 95% CI: 2–4%). The two highest risk 30-day mortality clusters (N = 118, 4%) were characterised by high urea and creatinine (70% died, 95% CI: 62–82%); and nutritional oedema with low platelets and reduced consciousness (97% died, 95% CI: 92–100%). For post-discharge mortality risk, two low-risk clusters (N = 1753, 61%) were defined by higher-than-average anthropometry (0% died, 95% CI: 0–1%), and gastroenteritis with lower-than-average anthropometry and without major laboratory abnormalities (0% died, 95% CI: 0–1%). Two highest risk post-discharge clusters (N = 267, 9%) included children leaving against medical advice (30% died, 95% CI: 25–37%), and severely-low anthropometry with signs of illness at discharge (46% died, 95% CI: 34–62%).</p> <p><strong>Interpretation</strong> WHO clinical syndromes are not sufficient at predicting risk. Integrating basic laboratory features such as urea, creatinine, red blood cell, lymphocyte and platelet counts into guidelines may strengthen efforts to identify high-risk children during paediatric hospitalisations.</p> <p><strong>Funding</strong> Bill & Melinda Gates Foundation OPP1131320.</p>
spellingShingle Diallo, AH
Sayeem Bin Shahid, ASM
Khan, AF
Saleem, AF
Singa, BO
Gnoumou, BS
Tigoi, C
Otieno, CA
Bourdon, C
Oduol, CO
Lancioni, CL
Manyasi, C
McGrath, CJ
Maronga, C
Lwanga, C
Brals, D
Ahmed, D
Mondal, D
Denno, DM
Mangale, DI
Chimezi, E
Mbale, E
Mupere, E
Mamun, GMS
Ouedraogo, I
Githinji, G
Berkley, JA
Njirammadzi, J
Mukisa, J
Thitiri, J
Haggstrom, J
Carreon, JD
Walson, JL
Jemutai, J
Tickell, KD
Shahrin, L
Mallewa, M
Hossain, MI
Chisti, MJ
Timbwa, M
Mburu, M
Ngari, MM
Ngao, N
Aber, P
Harawa, PP
Sukhtankar, P
Bandsma, RHJ
Bamouni, RM
Molyneux, S
Feldman, S
Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach
title Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach
title_full Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach
title_fullStr Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach
title_full_unstemmed Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach
title_short Characterising paediatric mortality during and after acute illness in Sub-Saharan Africa and South Asia: a secondary analysis of the CHAIN cohort using a machine learning approach
title_sort characterising paediatric mortality during and after acute illness in sub saharan africa and south asia a secondary analysis of the chain cohort using a machine learning approach
work_keys_str_mv AT dialloah characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT sayeembinshahidasm characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT khanaf characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT saleemaf characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT singabo characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT gnoumoubs characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT tigoic characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT otienoca characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT bourdonc characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT oduolco characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT lancionicl characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT manyasic characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT mcgrathcj characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT marongac characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT lwangac characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT bralsd characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT ahmedd characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT mondald characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT dennodm characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT mangaledi characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT chimezie characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT mbalee characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT muperee characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT mamungms characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT ouedraogoi characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT githinjig characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT berkleyja characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT njirammadzij characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT mukisaj characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT thitirij characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT haggstromj characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT carreonjd characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT walsonjl characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT jemutaij characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT tickellkd characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT shahrinl characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT mallewam characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT hossainmi characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT chistimj characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT timbwam characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT mburum characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT ngarimm characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT ngaon characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT aberp characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT harawapp characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT sukhtankarp characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT bandsmarhj characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT bamounirm characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT molyneuxs characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach
AT feldmans characterisingpaediatricmortalityduringandafteracuteillnessinsubsaharanafricaandsouthasiaasecondaryanalysisofthechaincohortusingamachinelearningapproach