Deep tracking in the wild: End-to-end tracking using recurrent neural networks
This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in complex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages, this method is learned end-to-end and can directly predict a full...
Auteurs principaux: | Dequaire, J, Ondrúška, P, Rao, D, Wang, D, Posner, H |
---|---|
Format: | Journal article |
Publié: |
SAGE Publications
2017
|
Documents similaires
-
End-to-end tracking and semantic segmentation using recurrent neural networks
par: Ondruska, P, et autres
Publié: (2016) -
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
par: Wang, S, et autres
Publié: (2017) -
End‐to‐end feature fusion Siamese network for adaptive visual tracking
par: Dongyan Guo, et autres
Publié: (2021-01-01) -
Off the beaten track: predicting localisation performance in visual teach and repeat
par: Dequaire, J, et autres
Publié: (2018) -
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
par: Jiang Zhao, et autres
Publié: (2022-11-01)