Deep tracking in the wild: End-to-end tracking using recurrent neural networks
This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in complex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages, this method is learned end-to-end and can directly predict a full...
المؤلفون الرئيسيون: | Dequaire, J, Ondrúška, P, Rao, D, Wang, D, Posner, H |
---|---|
التنسيق: | Journal article |
منشور في: |
SAGE Publications
2017
|
مواد مشابهة
-
End-to-end tracking and semantic segmentation using recurrent neural networks
حسب: Ondruska, P, وآخرون
منشور في: (2016) -
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
حسب: Wang, S, وآخرون
منشور في: (2017) -
End‐to‐end feature fusion Siamese network for adaptive visual tracking
حسب: Dongyan Guo, وآخرون
منشور في: (2021-01-01) -
Off the beaten track: predicting localisation performance in visual teach and repeat
حسب: Dequaire, J, وآخرون
منشور في: (2018) -
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
حسب: Jiang Zhao, وآخرون
منشور في: (2022-11-01)