Deep tracking in the wild: End-to-end tracking using recurrent neural networks
This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in complex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages, this method is learned end-to-end and can directly predict a full...
Päätekijät: | Dequaire, J, Ondrúška, P, Rao, D, Wang, D, Posner, H |
---|---|
Aineistotyyppi: | Journal article |
Julkaistu: |
SAGE Publications
2017
|
Samankaltaisia teoksia
-
End-to-end tracking and semantic segmentation using recurrent neural networks
Tekijä: Ondruska, P, et al.
Julkaistu: (2016) -
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
Tekijä: Wang, S, et al.
Julkaistu: (2017) -
End‐to‐end feature fusion Siamese network for adaptive visual tracking
Tekijä: Dongyan Guo, et al.
Julkaistu: (2021-01-01) -
Off the beaten track: predicting localisation performance in visual teach and repeat
Tekijä: Dequaire, J, et al.
Julkaistu: (2018) -
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
Tekijä: Jiang Zhao, et al.
Julkaistu: (2022-11-01)