Deep tracking in the wild: End-to-end tracking using recurrent neural networks
This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in complex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages, this method is learned end-to-end and can directly predict a full...
Главные авторы: | Dequaire, J, Ondrúška, P, Rao, D, Wang, D, Posner, H |
---|---|
Формат: | Journal article |
Опубликовано: |
SAGE Publications
2017
|
Схожие документы
-
End-to-end tracking and semantic segmentation using recurrent neural networks
по: Ondruska, P, и др.
Опубликовано: (2016) -
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
по: Wang, S, и др.
Опубликовано: (2017) -
End‐to‐end feature fusion Siamese network for adaptive visual tracking
по: Dongyan Guo, и др.
Опубликовано: (2021-01-01) -
Off the beaten track: predicting localisation performance in visual teach and repeat
по: Dequaire, J, и др.
Опубликовано: (2018) -
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
по: Jiang Zhao, и др.
Опубликовано: (2022-11-01)