Deep tracking in the wild: End-to-end tracking using recurrent neural networks
This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in complex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages, this method is learned end-to-end and can directly predict a full...
Huvudupphovsmän: | Dequaire, J, Ondrúška, P, Rao, D, Wang, D, Posner, H |
---|---|
Materialtyp: | Journal article |
Publicerad: |
SAGE Publications
2017
|
Liknande verk
Liknande verk
-
End-to-end tracking and semantic segmentation using recurrent neural networks
av: Ondruska, P, et al.
Publicerad: (2016) -
DeepVO: Towards End-to-End Visual Odometry with Deep Recurrent Convolutional Neural Networks
av: Wang, S, et al.
Publicerad: (2017) -
End‐to‐end feature fusion Siamese network for adaptive visual tracking
av: Dongyan Guo, et al.
Publicerad: (2021-01-01) -
Off the beaten track: predicting localisation performance in visual teach and repeat
av: Dequaire, J, et al.
Publicerad: (2018) -
Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking
av: Jiang Zhao, et al.
Publicerad: (2022-11-01)