Deep tracking in the wild: End-to-end tracking using recurrent neural networks

This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in complex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages, this method is learned end-to-end and can directly predict a full...

詳細記述

書誌詳細
主要な著者: Dequaire, J, Ondrúška, P, Rao, D, Wang, D, Posner, H
フォーマット: Journal article
出版事項: SAGE Publications 2017