Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data

We describe here an iterative method for jointly estimating the noise power spectrum from a CMB experiment’s time-ordered data, together with the maximum-likelihood map. We test the robustness of this method on simulated Boomerang datasets with realistic noise.

Bibliographic Details
Main Authors: Prunet, S, Ade, P, Bock, J, Bond, JR, Borrill, J, Boscaleri, A, Coble, K, Crill, B, Bernardis, P, Gasperis, G, Troia, G, Farese, P, Ferreira, P, Ganga, K, Giacometti, M, Hivon, E, Hristov, V, Iacoangeli, A, Jaffe, A, Lange, A, Martinis, L, Masi, S, Mason, P, Mauskopf, P, Melchiorri, A, Miglio, L, Montroy, T, Netterfield, C, Pascale, E, Piacentini, F, Pogosyan, D, Pongetti, F, Rao, S, Romeo, G, Ruhl, J, Scaramuzzi, F, Sforna, D, Vittorio, N
Format: Working paper
Published: 2001
_version_ 1826264385187741696
author Prunet, S
Ade, P
Bock, J
Bond, JR
Borrill, J
Boscaleri, A
Coble, K
Crill, B
Bernardis, P
Gasperis, G
Troia, G
Farese, P
Ferreira, P
Ganga, K
Giacometti, M
Hivon, E
Hristov, V
Iacoangeli, A
Jaffe, A
Lange, A
Martinis, L
Masi, S
Mason, P
Mauskopf, P
Melchiorri, A
Miglio, L
Montroy, T
Netterfield, C
Pascale, E
Piacentini, F
Pogosyan, D
Pongetti, F
Prunet, S
Rao, S
Romeo, G
Ruhl, J
Scaramuzzi, F
Sforna, D
Vittorio, N
author_facet Prunet, S
Ade, P
Bock, J
Bond, JR
Borrill, J
Boscaleri, A
Coble, K
Crill, B
Bernardis, P
Gasperis, G
Troia, G
Farese, P
Ferreira, P
Ganga, K
Giacometti, M
Hivon, E
Hristov, V
Iacoangeli, A
Jaffe, A
Lange, A
Martinis, L
Masi, S
Mason, P
Mauskopf, P
Melchiorri, A
Miglio, L
Montroy, T
Netterfield, C
Pascale, E
Piacentini, F
Pogosyan, D
Pongetti, F
Prunet, S
Rao, S
Romeo, G
Ruhl, J
Scaramuzzi, F
Sforna, D
Vittorio, N
author_sort Prunet, S
collection OXFORD
description We describe here an iterative method for jointly estimating the noise power spectrum from a CMB experiment’s time-ordered data, together with the maximum-likelihood map. We test the robustness of this method on simulated Boomerang datasets with realistic noise.
first_indexed 2024-03-06T20:06:57Z
format Working paper
id oxford-uuid:29323ac2-a5d9-4e10-8cb3-1b12acfe3e02
institution University of Oxford
last_indexed 2024-03-06T20:06:57Z
publishDate 2001
record_format dspace
spelling oxford-uuid:29323ac2-a5d9-4e10-8cb3-1b12acfe3e022022-03-26T12:17:50ZNoise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 dataWorking paperhttp://purl.org/coar/resource_type/c_8042uuid:29323ac2-a5d9-4e10-8cb3-1b12acfe3e02Symplectic Elements at Oxford2001Prunet, SAde, PBock, JBond, JRBorrill, JBoscaleri, ACoble, KCrill, BBernardis, PGasperis, GTroia, GFarese, PFerreira, PGanga, KGiacometti, MHivon, EHristov, VIacoangeli, AJaffe, ALange, AMartinis, LMasi, SMason, PMauskopf, PMelchiorri, AMiglio, LMontroy, TNetterfield, CPascale, EPiacentini, FPogosyan, DPongetti, FPrunet, SRao, SRomeo, GRuhl, JScaramuzzi, FSforna, DVittorio, NWe describe here an iterative method for jointly estimating the noise power spectrum from a CMB experiment’s time-ordered data, together with the maximum-likelihood map. We test the robustness of this method on simulated Boomerang datasets with realistic noise.
spellingShingle Prunet, S
Ade, P
Bock, J
Bond, JR
Borrill, J
Boscaleri, A
Coble, K
Crill, B
Bernardis, P
Gasperis, G
Troia, G
Farese, P
Ferreira, P
Ganga, K
Giacometti, M
Hivon, E
Hristov, V
Iacoangeli, A
Jaffe, A
Lange, A
Martinis, L
Masi, S
Mason, P
Mauskopf, P
Melchiorri, A
Miglio, L
Montroy, T
Netterfield, C
Pascale, E
Piacentini, F
Pogosyan, D
Pongetti, F
Prunet, S
Rao, S
Romeo, G
Ruhl, J
Scaramuzzi, F
Sforna, D
Vittorio, N
Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data
title Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data
title_full Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data
title_fullStr Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data
title_full_unstemmed Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data
title_short Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data
title_sort noise estimation in cmb time streams and fast map making application to the boomerang98 data
work_keys_str_mv AT prunets noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT adep noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT bockj noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT bondjr noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT borrillj noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT boscaleria noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT coblek noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT crillb noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT bernardisp noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT gasperisg noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT troiag noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT faresep noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT ferreirap noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT gangak noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT giacomettim noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT hivone noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT hristovv noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT iacoangelia noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT jaffea noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT langea noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT martinisl noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT masis noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT masonp noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT mauskopfp noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT melchiorria noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT migliol noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT montroyt noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT netterfieldc noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT pascalee noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT piacentinif noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT pogosyand noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT pongettif noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT prunets noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT raos noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT romeog noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT ruhlj noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT scaramuzzif noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT sfornad noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data
AT vittorion noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data