Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data
We describe here an iterative method for jointly estimating the noise power spectrum from a CMB experiment’s time-ordered data, together with the maximum-likelihood map. We test the robustness of this method on simulated Boomerang datasets with realistic noise.
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Format: | Working paper |
Published: |
2001
|
_version_ | 1826264385187741696 |
---|---|
author | Prunet, S Ade, P Bock, J Bond, JR Borrill, J Boscaleri, A Coble, K Crill, B Bernardis, P Gasperis, G Troia, G Farese, P Ferreira, P Ganga, K Giacometti, M Hivon, E Hristov, V Iacoangeli, A Jaffe, A Lange, A Martinis, L Masi, S Mason, P Mauskopf, P Melchiorri, A Miglio, L Montroy, T Netterfield, C Pascale, E Piacentini, F Pogosyan, D Pongetti, F Prunet, S Rao, S Romeo, G Ruhl, J Scaramuzzi, F Sforna, D Vittorio, N |
author_facet | Prunet, S Ade, P Bock, J Bond, JR Borrill, J Boscaleri, A Coble, K Crill, B Bernardis, P Gasperis, G Troia, G Farese, P Ferreira, P Ganga, K Giacometti, M Hivon, E Hristov, V Iacoangeli, A Jaffe, A Lange, A Martinis, L Masi, S Mason, P Mauskopf, P Melchiorri, A Miglio, L Montroy, T Netterfield, C Pascale, E Piacentini, F Pogosyan, D Pongetti, F Prunet, S Rao, S Romeo, G Ruhl, J Scaramuzzi, F Sforna, D Vittorio, N |
author_sort | Prunet, S |
collection | OXFORD |
description | We describe here an iterative method for jointly estimating the noise power spectrum from a CMB experiment’s time-ordered data, together with the maximum-likelihood map. We test the robustness of this method on simulated Boomerang datasets with realistic noise. |
first_indexed | 2024-03-06T20:06:57Z |
format | Working paper |
id | oxford-uuid:29323ac2-a5d9-4e10-8cb3-1b12acfe3e02 |
institution | University of Oxford |
last_indexed | 2024-03-06T20:06:57Z |
publishDate | 2001 |
record_format | dspace |
spelling | oxford-uuid:29323ac2-a5d9-4e10-8cb3-1b12acfe3e022022-03-26T12:17:50ZNoise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 dataWorking paperhttp://purl.org/coar/resource_type/c_8042uuid:29323ac2-a5d9-4e10-8cb3-1b12acfe3e02Symplectic Elements at Oxford2001Prunet, SAde, PBock, JBond, JRBorrill, JBoscaleri, ACoble, KCrill, BBernardis, PGasperis, GTroia, GFarese, PFerreira, PGanga, KGiacometti, MHivon, EHristov, VIacoangeli, AJaffe, ALange, AMartinis, LMasi, SMason, PMauskopf, PMelchiorri, AMiglio, LMontroy, TNetterfield, CPascale, EPiacentini, FPogosyan, DPongetti, FPrunet, SRao, SRomeo, GRuhl, JScaramuzzi, FSforna, DVittorio, NWe describe here an iterative method for jointly estimating the noise power spectrum from a CMB experiment’s time-ordered data, together with the maximum-likelihood map. We test the robustness of this method on simulated Boomerang datasets with realistic noise. |
spellingShingle | Prunet, S Ade, P Bock, J Bond, JR Borrill, J Boscaleri, A Coble, K Crill, B Bernardis, P Gasperis, G Troia, G Farese, P Ferreira, P Ganga, K Giacometti, M Hivon, E Hristov, V Iacoangeli, A Jaffe, A Lange, A Martinis, L Masi, S Mason, P Mauskopf, P Melchiorri, A Miglio, L Montroy, T Netterfield, C Pascale, E Piacentini, F Pogosyan, D Pongetti, F Prunet, S Rao, S Romeo, G Ruhl, J Scaramuzzi, F Sforna, D Vittorio, N Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data |
title | Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data |
title_full | Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data |
title_fullStr | Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data |
title_full_unstemmed | Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data |
title_short | Noise estimation in CMB time-streams and fast map-making. Application to the BOOMERanG98 data |
title_sort | noise estimation in cmb time streams and fast map making application to the boomerang98 data |
work_keys_str_mv | AT prunets noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT adep noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT bockj noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT bondjr noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT borrillj noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT boscaleria noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT coblek noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT crillb noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT bernardisp noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT gasperisg noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT troiag noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT faresep noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT ferreirap noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT gangak noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT giacomettim noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT hivone noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT hristovv noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT iacoangelia noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT jaffea noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT langea noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT martinisl noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT masis noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT masonp noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT mauskopfp noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT melchiorria noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT migliol noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT montroyt noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT netterfieldc noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT pascalee noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT piacentinif noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT pogosyand noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT pongettif noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT prunets noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT raos noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT romeog noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT ruhlj noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT scaramuzzif noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT sfornad noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data AT vittorion noiseestimationincmbtimestreamsandfastmapmakingapplicationtotheboomerang98data |