A closest point penalty method for evolution equations on surfaces
<p>This thesis introduces and analyses a numerical method for solving time-dependent partial differential equations (PDEs) on surfaces. This method is based on the closest point method, and solves the surface PDE by solving a suitably chosen equation in a band surrounding the surface. As it us...
Egile nagusia: | von Glehn, I |
---|---|
Beste egile batzuk: | Macdonald, C |
Formatua: | Thesis |
Hizkuntza: | English |
Argitaratua: |
2014
|
Gaiak: |
Antzeko izenburuak
-
Geometric multigrid and closest point methods for surfaces and general domains
nork: Chen, Y
Argitaratua: (2015) -
Level set equations on surfaces via the Closest Point Method
nork: Macdonald, C, et al.
Argitaratua: (2008) -
Segmentation on surfaces with the closest point method
nork: Tian, L, et al.
Argitaratua: (2009) -
THE IMPLICIT CLOSEST POINT METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON SURFACES
nork: Macdonald, C, et al.
Argitaratua: (2009) -
CALCULUS ON SURFACES WITH GENERAL CLOSEST POINT FUNCTIONS
nork: Maerz, T, et al.
Argitaratua: (2012)