A closest point penalty method for evolution equations on surfaces
<p>This thesis introduces and analyses a numerical method for solving time-dependent partial differential equations (PDEs) on surfaces. This method is based on the closest point method, and solves the surface PDE by solving a suitably chosen equation in a band surrounding the surface. As it us...
المؤلف الرئيسي: | von Glehn, I |
---|---|
مؤلفون آخرون: | Macdonald, C |
التنسيق: | أطروحة |
اللغة: | English |
منشور في: |
2014
|
الموضوعات: |
مواد مشابهة
-
Geometric multigrid and closest point methods for surfaces and general domains
حسب: Chen, Y
منشور في: (2015) -
Level set equations on surfaces via the Closest Point Method
حسب: Macdonald, C, وآخرون
منشور في: (2008) -
Segmentation on surfaces with the closest point method
حسب: Tian, L, وآخرون
منشور في: (2009) -
THE IMPLICIT CLOSEST POINT METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON SURFACES
حسب: Macdonald, C, وآخرون
منشور في: (2009) -
CALCULUS ON SURFACES WITH GENERAL CLOSEST POINT FUNCTIONS
حسب: Maerz, T, وآخرون
منشور في: (2012)