A closest point penalty method for evolution equations on surfaces
<p>This thesis introduces and analyses a numerical method for solving time-dependent partial differential equations (PDEs) on surfaces. This method is based on the closest point method, and solves the surface PDE by solving a suitably chosen equation in a band surrounding the surface. As it us...
Hlavní autor: | von Glehn, I |
---|---|
Další autoři: | Macdonald, C |
Médium: | Diplomová práce |
Jazyk: | English |
Vydáno: |
2014
|
Témata: |
Podobné jednotky
-
Geometric multigrid and closest point methods for surfaces and general domains
Autor: Chen, Y
Vydáno: (2015) -
Level set equations on surfaces via the Closest Point Method
Autor: Macdonald, C, a další
Vydáno: (2008) -
Segmentation on surfaces with the closest point method
Autor: Tian, L, a další
Vydáno: (2009) -
THE IMPLICIT CLOSEST POINT METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON SURFACES
Autor: Macdonald, C, a další
Vydáno: (2009) -
CALCULUS ON SURFACES WITH GENERAL CLOSEST POINT FUNCTIONS
Autor: Maerz, T, a další
Vydáno: (2012)