A closest point penalty method for evolution equations on surfaces
<p>This thesis introduces and analyses a numerical method for solving time-dependent partial differential equations (PDEs) on surfaces. This method is based on the closest point method, and solves the surface PDE by solving a suitably chosen equation in a band surrounding the surface. As it us...
Tác giả chính: | von Glehn, I |
---|---|
Tác giả khác: | Macdonald, C |
Định dạng: | Luận văn |
Ngôn ngữ: | English |
Được phát hành: |
2014
|
Những chủ đề: |
Những quyển sách tương tự
-
Geometric multigrid and closest point methods for surfaces and general domains
Bằng: Chen, Y
Được phát hành: (2015) -
Level set equations on surfaces via the Closest Point Method
Bằng: Macdonald, C, et al.
Được phát hành: (2008) -
Segmentation on surfaces with the closest point method
Bằng: Tian, L, et al.
Được phát hành: (2009) -
THE IMPLICIT CLOSEST POINT METHOD FOR THE NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS ON SURFACES
Bằng: Macdonald, C, et al.
Được phát hành: (2009) -
CALCULUS ON SURFACES WITH GENERAL CLOSEST POINT FUNCTIONS
Bằng: Maerz, T, et al.
Được phát hành: (2012)