Ca²⁺-induced delayed afterdepolarizations are triggered by dyadic subspace Ca2²⁺ affirming that increasing SERCA reduces aftercontractions.

Ca(2+)-induced delayed afterdepolarizations (DADs) are depolarizations that occur after full repolarization. They have been observed across multiple species and cell types. Experimental results have indicated that the main cause of DADs is Ca(2+) overload. The main hypothesis as to their initiation...

Full description

Bibliographic Details
Main Authors: Fink, M, Noble, P, Noble, D
Format: Journal article
Language:English
Published: 2011
_version_ 1826264421887901696
author Fink, M
Noble, P
Noble, D
author_facet Fink, M
Noble, P
Noble, D
author_sort Fink, M
collection OXFORD
description Ca(2+)-induced delayed afterdepolarizations (DADs) are depolarizations that occur after full repolarization. They have been observed across multiple species and cell types. Experimental results have indicated that the main cause of DADs is Ca(2+) overload. The main hypothesis as to their initiation has been Ca(2+) overflow from the overloaded sarcoplasmic reticulum (SR). Our results using 37 previously published mathematical models provide evidence that Ca(2+)-induced DADs are initiated by the same mechanism as Ca(2+)-induced Ca(2+) release, i.e., the modulation of the opening of ryanodine receptors (RyR) by Ca(2+) in the dyadic subspace; an SR overflow mechanism was not necessary for the induction of DADs in any of the models. The SR Ca(2+) level is better viewed as a modulator of the appearance of DADs and the magnitude of Ca(2+) release. The threshold for the total Ca(2+) level within the cell (not only the SR) at which Ca(2+) oscillations arise in the models is close to their baseline level (∼1- to 3-fold). It is most sensitive to changes in the maximum sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump rate (directly proportional), the opening probability of RyRs, and the Ca(2+) diffusion rate from the dyadic subspace into the cytosol (both indirectly proportional), indicating that the appearance of DADs is multifactorial. This shift in emphasis away from SR overload as the trigger for DADs toward a multifactorial analysis could explain why SERCA overexpression has been shown to suppress DADs (while increasing contractility) and why DADs appear during heart failure (at low SR Ca(2+) levels).
first_indexed 2024-03-06T20:07:32Z
format Journal article
id oxford-uuid:2966b254-66e9-43a4-b465-244419e3def2
institution University of Oxford
language English
last_indexed 2024-03-06T20:07:32Z
publishDate 2011
record_format dspace
spelling oxford-uuid:2966b254-66e9-43a4-b465-244419e3def22022-03-26T12:18:55ZCa²⁺-induced delayed afterdepolarizations are triggered by dyadic subspace Ca2²⁺ affirming that increasing SERCA reduces aftercontractions.Journal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:2966b254-66e9-43a4-b465-244419e3def2EnglishSymplectic Elements at Oxford2011Fink, MNoble, PNoble, DCa(2+)-induced delayed afterdepolarizations (DADs) are depolarizations that occur after full repolarization. They have been observed across multiple species and cell types. Experimental results have indicated that the main cause of DADs is Ca(2+) overload. The main hypothesis as to their initiation has been Ca(2+) overflow from the overloaded sarcoplasmic reticulum (SR). Our results using 37 previously published mathematical models provide evidence that Ca(2+)-induced DADs are initiated by the same mechanism as Ca(2+)-induced Ca(2+) release, i.e., the modulation of the opening of ryanodine receptors (RyR) by Ca(2+) in the dyadic subspace; an SR overflow mechanism was not necessary for the induction of DADs in any of the models. The SR Ca(2+) level is better viewed as a modulator of the appearance of DADs and the magnitude of Ca(2+) release. The threshold for the total Ca(2+) level within the cell (not only the SR) at which Ca(2+) oscillations arise in the models is close to their baseline level (∼1- to 3-fold). It is most sensitive to changes in the maximum sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) pump rate (directly proportional), the opening probability of RyRs, and the Ca(2+) diffusion rate from the dyadic subspace into the cytosol (both indirectly proportional), indicating that the appearance of DADs is multifactorial. This shift in emphasis away from SR overload as the trigger for DADs toward a multifactorial analysis could explain why SERCA overexpression has been shown to suppress DADs (while increasing contractility) and why DADs appear during heart failure (at low SR Ca(2+) levels).
spellingShingle Fink, M
Noble, P
Noble, D
Ca²⁺-induced delayed afterdepolarizations are triggered by dyadic subspace Ca2²⁺ affirming that increasing SERCA reduces aftercontractions.
title Ca²⁺-induced delayed afterdepolarizations are triggered by dyadic subspace Ca2²⁺ affirming that increasing SERCA reduces aftercontractions.
title_full Ca²⁺-induced delayed afterdepolarizations are triggered by dyadic subspace Ca2²⁺ affirming that increasing SERCA reduces aftercontractions.
title_fullStr Ca²⁺-induced delayed afterdepolarizations are triggered by dyadic subspace Ca2²⁺ affirming that increasing SERCA reduces aftercontractions.
title_full_unstemmed Ca²⁺-induced delayed afterdepolarizations are triggered by dyadic subspace Ca2²⁺ affirming that increasing SERCA reduces aftercontractions.
title_short Ca²⁺-induced delayed afterdepolarizations are triggered by dyadic subspace Ca2²⁺ affirming that increasing SERCA reduces aftercontractions.
title_sort ca²⁺ induced delayed afterdepolarizations are triggered by dyadic subspace ca2²⁺ affirming that increasing serca reduces aftercontractions
work_keys_str_mv AT finkm ca2induceddelayedafterdepolarizationsaretriggeredbydyadicsubspaceca22affirmingthatincreasingsercareducesaftercontractions
AT noblep ca2induceddelayedafterdepolarizationsaretriggeredbydyadicsubspaceca22affirmingthatincreasingsercareducesaftercontractions
AT nobled ca2induceddelayedafterdepolarizationsaretriggeredbydyadicsubspaceca22affirmingthatincreasingsercareducesaftercontractions