Exigent examiner and mean teacher: an advanced 3D CNN-based semi-supervised brain tumor segmentation framework
With the rise of deep learning applications to medical imaging, there has been a growing appetite for large and well-annotated datasets, yet annotation is time-consuming and hard to come by. In this work, we train a 3D semantic segmentation model in an advanced semi-supervised learning fashion. The...
Glavni autori: | Wang, Z, Voiculescu, ID |
---|---|
Format: | Conference item |
Jezik: | English |
Izdano: |
Springer
2023
|
Slični predmeti
-
Application of semi-supervised Mean Teacher to rock image segmentation
od: Jiashan Li, i dr.
Izdano: (2025-01-01) -
An uncertainty-aware transformer for MRI cardiac semantic segmentation via mean teachers
od: Wang, Z, i dr.
Izdano: (2022) -
Semi-Supervised Skin Lesion Segmentation With Coupling CNN and Transformer Features
od: Mohammad D. Alahmadi, i dr.
Izdano: (2022-01-01) -
A Semi-Supervised CNN With Fuzzy Rough C-Mean for Image Classification
od: Saman Riaz, i dr.
Izdano: (2019-01-01) -
MTANS: Multi-Scale Mean Teacher Combined Adversarial Network with Shape-Aware Embedding for Semi-Supervised Brain Lesion Segmentation
od: Gaoxiang Chen, i dr.
Izdano: (2021-12-01)